ارائه روشی ترکیبی برای افزایش دقت پیش‌بینی در کاهش داده با استفاده از مدل مجموعه راف و هوش تجمعی

Authors

Abstract:

Designing a system with an emphasis on minimal human intervention helps users to explore information quickly. Adverting to methods of analyzing large data is compulsory as well. Hence, utilizing power of the data mining process to identify patterns and models become more essential from aspect of relationship between the various elements in the database and discover hidden knowledge. Therefore, Rough set theory can be used as a tool to explore data dependencies and reducing features outlined in a data set. The main purpose of the rough theory is to obtain approximate concepts of acquired data. This theory is a powerful mathematical tool for arguing in ambiguous and indeterminate terms that provides methods for remove and reduce unrelated or excessive knowledge information on the data sets. This process of data reduction is based on the main task of the system, and without losing the basic data of the data sets. Rough set theory can play a very effective role to support decision-making systems, but in some cases, with increasing data volumes, there are inconsistent or collisional results which using swarm intelligence-based methods can choose the best of the contradictory, effectless or dummy data. This will bring interesting, unexpected and valuable structures from within a wide range of data. Since the ant colony optimization compares all the exploratory paths generated by each ant and the best route is selected from the existing paths, so considering the improvement of the selecting the main features and improving the theory of the Rough set, paths are not eliminated from the possible paths. In this research, the combination of the ant colony optimization and rough set theory have been used to find the subset of the main features and to delete the inappropriate information with the loss of the minimum information. This research will improve the features reduction technique employment Rough set theory and ant colony optimization. The gist of this research is removing useless information with minimal information loss. The results on petroleum prices data evaluation demonstrate that the hybrid method is more efficient than recent methods.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

روشی جدید در تعیین ورشکستگی با استفاده از تحلیل پوششی داده ها و تئوری مجموعه های راف فازی

در شرایط متغیر اقتصادی و نوسانات شدید مالی در محیط های تجاری، وجود الگوهایی برای پیش بینی عملکرد مالی شرکتها از اهمیت بسزایی برخوردار است. یکی از این موارد پیش بینی وقوع بحران مالی و به عبارت دیگر ورشکستگی است. تحلیل پوششی داده ها (DEA) یک ابزار قدرتمند در اختیار مدیران است که عملکرد شرکت خود را در فعالیت های تجاری محک بزنند. مدلهای مرسوم تحلیل پوششی داده ها ارزیابی کارایی نسبی واحدهای تصمیم گی...

full text

انتخاب زیر مجموعه بهینه ماهواره‌ها با استفاده از مدل ترکیبی SVMPSO به منظور افزایش دقت مکان‌یابی GPS

هندسه ماهواره‌ها، نشان‌دهنده مکان‌های هندسی ماهواره‌های GPS است، فاکتوری که ارتباط هندسی صورت فلکی ماهواره‌های GPS را با همدیگر نشان می‌دهد، GDOP است. همه گیرنده‌ها از الگوریتم‌هایی برای انتخاب ماهواره‌ها استفاده می‌کنند، در این مقاله هدف استفاده از راهکار دسته‌بندی و تخمین فاکتور GDOP برای انتخاب زیر مجموعه بهینه ماهواره‌ها است. برای این منظور از مدل ترکیبی SVMPSO استفاده شده است. این مدل بر خ...

full text

روشی جدید در تعیین ورشکستگی با استفاده از تحلیل پوششی داده ها و تئوری مجموعه های راف فازی

در شرایط متغیر اقتصادی و نوسانات شدید مالی در محیط های تجاری، وجود الگوهایی برای پیش بینی عملکرد مالی شرکتها از اهمیت بسزایی برخوردار است. یکی از این موارد پیش بینی وقوع بحران مالی و به عبارت دیگر ورشکستگی است. تحلیل پوششی داده ها (dea) یک ابزار قدرتمند در اختیار مدیران است که عملکرد شرکت خود را در فعالیت های تجاری محک بزنند. مدلهای مرسوم تحلیل پوششی داده ها ارزیابی کارایی نسبی واحدهای تصمیم گی...

full text

ارائه روشی نوین برای بهبود دقت بازسازی داده حالت پلاریمتری کامل از روی داده حالت پلاریمتری دو دایروی

علیرغم این که داده حالت پلاریمتری کامل اطلاعات بسیار خوبی از اهداف زمینی فراهم می آورد، مشکلاتی از قبیل کافی نبودن عرض پوشش‌دهی برای اهداف نظارتی و بالا بودن توان ارسالی، حجم داده، هزینه و پیچیدگی سیستم، پژوهشگران این حوزه را به سمت استفاده از حالت پلاریمتری فشرده سوق داد. در این حالت با سعی بر اینکه اطلاعات دریافتی تا حد ممکن به اطلاعات حالت پلاریمتری کامل نزدیک باشد، مشکلات حالت پلاریمتری کام...

full text

انتخاب زیر مجموعه بهینه ماهواره ها با استفاده از مدل ترکیبی svmpso به منظور افزایش دقت مکان یابی gps

هندسه ماهواره ها، نشان دهنده مکان های هندسی ماهواره های gps است، فاکتوری که ارتباط هندسی صورت فلکی ماهواره های gps را با همدیگر نشان می دهد، gdop است. همه گیرنده ها از الگوریتم هایی برای انتخاب ماهواره ها استفاده می کنند، در این مقاله هدف استفاده از راهکار دسته بندی و تخمین فاکتور gdop برای انتخاب زیر مجموعه بهینه ماهواره ها است. برای این منظور از مدل ترکیبی svmpso استفاده شده است. این مدل بر خ...

full text

هوش مصنوعی و الگوریتم ترکیبی مناسب برای افزایش دقت پیش‌بینی‌های مدیریتی

این مقاله یک سامانه‌ی خبره‌ی ساده و اثربخش را برای پیش‌بینی داده‌های نوسانی تصادفی وکوتاه‌مدت ایجاد نموده است. فرآیند بررسی شامل معرفی سری فوریه، زنجیره‌ی مارکوف و مقایسه‌ی مدل پیش‌بینی (گِری) با مدل پیش‌بینی ترکیبی گری- فوریه- مارکوف که در هم آمیخته شده‌اندادامه یافته، تا منجربه خلق یک سامانه‌ی خبره‌ی پیش‌بینی با کمک هوش مصنوعی شود. این مدل موجب می‌شود اثربخشی پیش‌بینی داده‌های تصادفی نوسانی در...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 3

pages  51- 64

publication date 2017-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023